lIT JAM Physics

Vectors (5 Lectures)

* Vector algebra.

 Scalar and vector products of two, three-and four vectors.
* Polar and Axial vectors

* Derivatives of a vecton\with respect to a parameter.

* Gradient, divergence and curl of vectors fields.



Vector Algebra
e Addition & Multiplication of Vector
* Dot & Cross product of two vectors

o

* Dot & Cross product of three vecto ,i\"

* Dot & Cross product of F%%\&

e Different Conditions §ectors



* Vector and Scalar quantities

If you walk 4 miles due north and then 3 miles due east (Fig. 1.1), you will have gone a
total of 7 miles, but you're not 7 miles from where you set out—you’re only 5. We need an

arithmetic to describe quantities like this, which evidently do not add in the ordinary way.
The reason they don’t, of course, is that displacements (straight line segments going from
one point (0 another) have direction as well as magnitude (length), and it is essenfial to
take both into account when you combine them. Such objects are called vectors: velocity,
acceleration, force and momentum are other examples. By contrast, quantities that have
magnitude but no direction are called scalars: examples include mass, charge, density,
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Minus A (—A) is a vector with the
& A same magnitude as A but of opposite direction
1

mi ) Note that vectors have magnitude
and direction but not location

| Figure 1.2
Figure 1.1



 Polar & Axial Vectors

Polar vectors:
The vectors associated with a linear directional effect are called polar vectors.
The examples of polar vectors are force, acceleration, linear velocity, linear momentum

Axial vectors
The vectors associated with rotation about an axis are called axial vectors.
The examples of axial vectors are: torque, angular velocity, angular momentum etc.



Types of Vector

* Zero Vector: (6) A vector whose initial and terminal points coincides
* Unit Vector (@) : A vector whose magnitude is unity
* Co-initial Vectors: Two or more vector have same ‘tnitial points

* Collinear Vectors: Two or more vectors\are said to be collinear if they are

parallel to the same linesirrespective of magnitude and direction.

* Equal Vector: They have same magnitude and direction



e \ector Ope rations: we define four vector operations: addition and three kinds of multiplication.

(1) Addition of two vectors. Place the tail of B at the head of A} the sum, A + B, is
the vector from the tail of A to the head of B (Fig. 1.3). (This rule generalizes the obvious
procedure for combining two displacements.) Addition is commutative:

« Commutative

e Assoclative

A+B)+C=A4+B+C) (A+B)
To subtract a vector (Fig. 1.4), add its opposite:

A—B=A+(—B)&S%\

A+B=B A —B o

Figure 1.4



(ii) Multiplication by a scalar. Multiplication of a vector by a positive scalar @ mul-
tiplies the magnitude but leaves the direction unchanged (Fig. 1.5). (If a is negative the
direction is reversed.) Scaldr multiplication is distributive:

a(A 4+ B) = aA + aB.

(iif) Dot product of two vectors. The dot product of two vectors is defined by ”

A
A-B= ABcosé. (L1.1)

Figure 1.5
where ¢ is the angle they form when placed tail-to-tail (Fig. 1.6). Note that A - B is itself a
scalar (hence the alternative name scalar product). The dot product is commutative,

A-B=B-A

-

Figure 1.6



e Distributive Law
A-B+C)=A-B+A-C.  (1.2)

Geometrically, A - B is the product of A times the projection of B along A (or the product
of B times the projection of A along B). If the two vectors are parallel, then A - B = AB.
In particular, for any vector A,

A-A=A% (1.3)

If A and B are perpendicular, then A - B =0

*Ex LetC = A B (Fig. 1.7), and calculate the dot product of C with itself.
*Soln C.C=(A-B)-(A—-B)=A-A-A-B—B-A+B.B

2 .2 2 , o
C"=A"+ B~ —2ABcosO This is the law of cosines



e Work done as scalar Product

If a constant force F acting on a particle displaces it from A to B then, F
Work done = (component of F along AB). Dis placement

= F Cosle. AB
N

_)
- F.AB

Work done = Force . Displacement A

USEFUL RESULTS_'_O“ S e
1 =1 (1) cos0°=1 Similarly, 7.7 =1, k.k =1
’2 7 = (1) (1) cos90°=0 Similarly, 7.k =0, k.i =0



* . (iv) Cross product of two vectors. The cross product of two vectors 1s defined by

A XB=ABsinén. (1.4)

where n is a unit vector (vector of length 1) pointing perpendicular to the plane of A and
B. (I shall use a hat () to designate unit vectors.) Of course, there are two directions
perpendicular to any plane: “in” and “out.”” The ambiguity is resolved by the right-hand
rule: let your fingers point in the direction of the first vector-and curl around (via the smaller
angle) toward the second; then your thumb indicates the direction of n. (In Fig. 1.8 A x B
points into the page; B x A points ouf of the page.) Note that A x B is itself a vector (hence
the alternative name vector product). The cross product is distributive,

e Distributive Law AxB+C)=AxB+AxC (1.5)

but not commutative. In fact, (B xA)=—(A x B) (1.6)
______________ y
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Figure 1.7 Figure 1.8



* Note Geometrically, |A x B| is the area of the parallelogram generated by A and B (Fig. 1.8). If
two vectors are parallel, their cross product is zero. In particular,

AxA=0 for any vector A

Useful results

Since 1, j .k are three mutually perpendicular unit vectors, then

/l§></l§=/]\></]\'=1/€><12=0

ixj = —jxi=k /}x?=—;\x}
}x12=—kxj=i and sz/]\'z—/]\xlt
72><2=—1><k=j ?xltz—ltx/z}



* Example of cross product: Torque & Angular Velocity

I MOMENT OF A FORCE o

_)
Let a force F (PQ) act at a point P.

-
Moment of F about O
= Product of force F and perpendicular

distance (ON. ﬁ )

= (PQ) (ON)(N) = (PQ) (OP) sin © (N) = OP x PQ . N,
=  M=rxF

Let a rigid body be rotating about the axis OA with the angular
velocity o which is a vector and its magnitude is  radians per second
and its direction is parallel to the axis of rotation OA.

Let P be any point on the body such that OP = 7 and
ZAOP =6 and AP L OA. Let the velocity of P be V.

~ - -
Let N be a unit vector perpendicular to o and 7 .

ox? =(@rsin®) n = (0 AP) 1 = (Speed of P) 7

= Velocity of P 1 to o and
> -

Hence = ®X 7

<I




* VVector Algebra: Component Form

In the previous section I defined the four vector operations (addition, scalar multiplication,
dot product, and cross product) in “abstract” form—that is, without reference to any partic-
ular coordinate system. In practice, it is often easier to set up Cartesian coordinates x, v, Z
and work with vector “components.” Let X, y, and Z be unit vectors parallel to the x, y, and
z axes, respectively (Fig. 1.9(a)). An arbitrary vector A can be expanded in terms of these

basis vectors (Fig. 1.9(b)):
A=A X+AF}F+A z\) \ ¥

i !

A

j A-f - v\ z,z:

/y y A 7
X

(a) x A R

Figure 1.9



* > The numbers Ay, Ay, and A, are called components of A; geometrically, they are the

projections of A along the three coordinate axes. We can now reformulate each of the four
vector operations as a rule for manipulating components:

A+B= (Axx+Avy+AEz)+(BxK+Byy+Bz)— (AI+BT)K+(A + B, )Y +(A; + Bz (1.7)

(1) Rule: To add vectors, add like components
= (@A)X + @AyF + @Az (1.8)
(i1) Rule: 7o multiply by a scalar, multiply each component.

Because X, ¥, and z are mutually perpendicular unit vectors,
X-X=y-¥y=2z-z2=1;, x-y=x-z=y.2=0. (1.9)
A-B = (A:x+ A,¥+ A:2) (B:X+ By¥ + B.z)



(iii) Rule: To calculate the dot product, multiply like components, and add.
In particular,

AA=A +AY AL A= JAlialsal (L.11)

(This s, 1f you like, the three-dimensional generalization of the Pythagorean theorem.) Note

that the dot product of A with any unir vector is the component of A along that direction
(thus A - x = A, A y=A,,and A -Z = A.).

kxR= §x§ = 2x2=0, Jxi=-ix§ = % - (1.12)
XXYy=—§YXX = Z IXX=—-XxZ = V. |

a \ = \ 7
AxB = (AX+ A¥+ A;Z) x (BX+ B,y + B,Z) (1.13)

B
= (AyB: — A:By)X + (A By — A, B.)§ + (AxBy — Ay Bk
e Determinant Form '

t v 3
AxB=]| A, A}, A
B. B, B,

(iv) Rule: 7o calculate the cross product, form the determinant whose first row is X, v.Z,
whose second row is A (in component form), and whose third row is B.



* EX Find the angle between the face diagonals of a cube.

Solution: We might as well use a cube of side 1, and place it as shown in Fig. 1.10, with one
corner at the origin. The face diagonals A and B are

A=I1x+0¥+122 B=0x+1y+1z

So, in component form,

On the other hand, in “abstract™ form,

J(0.1.0)

A-B=ABcosf =+/2v2cos8 =2cos8. x4 0.0

Theretore -
\ Figure 1.10
cosf =1/2, or 6 =060°. £

\\\

Of course, you can get the answer more easily by drawing in a diagonal across the top of the
cube, completing the equilateral triangle. But in cases where the geometry is not so simple,

this device of comparing the abstract and component forms of the dot product can be a very
efficient means of finding angles.



* EX Find the angle between the body diagonals of a cube,

* Ex Write down the coordinate body diagonals, face diagonals and corners of

cube assuming one corner is origin.

J0.1.0)




* Triple products: Dot & Cross Product of three vectors

Since the cross product of two vectors is itself a vector, it can be dotted or crossed with a
third vector to form a triple product.

(i) Scalar triple product: A - (B x C). Geometrically, |A - (B x C)| is the volume
of the parallelepiped generated by A, B, and C, since |B x C| is the area of the base, and
|A cos 6] is the altitude (Fig. 1.12). Evidently,

A-BxC)y=B-(CxA)=C-(A xB), (1.15)

for they all correspond to the same figure. Note that “alphabetical” order is preserved—in
view of Eq. 1.6, the “nonalphabetical” triple products, have the opposite sign.

A-(CxB)=B-(AxC)=C-(B xA),

Figure 1.11 Figure 1.12



* In determinant form Ay
A-BxC)=| B,

Cy

Note that the dot and cross can be interchanged: A - (B x C) = (A x B) - C

(this follows immediately from Eq. 1.15); however, the placement of the parentheses 1s
critical: (A - B) x C is a mcaningless expression—you can’t make a cross product from a

scalar and a vector,

by the so-called BAC-CAB rule:

a ( \\ -
AxBxC)=BA-C)-—CA-B).D
Na'AA L\

Ay
B,
Cy

A

e

B;
C-

£

AxB)xC=-Cx(AxB)=-AB-C)+BA.O)

\

is an entirely different vector. Incidentally, all higher vector products can be similarly
reduced, often by repeated application of Eq. 1.17, so it is never necessary for an expression

(1.16)

~\_

(ii) Vector triple product: A x (B x C). The vector triple product can be simplified

(1.17)

to contain more than one cross product in any term. For instance,



 Geometrical interpretation of scalar triple product

e [he scalar triple product gives the volume of the parallelopiped whose sides are represented by the vectors a, b, and

e Vector product (a x b) has
magnitude equal to the area of the base

direction perpendicular to the base.

e [he component of c in this direction I1s equal to the height of the parallelopiped

Hence
|(a = b) - | = volume of parallelopied



* Linearly dependent vectors

An
If the scalar triple product of three vectors / ; c
a - {h b E} m— / a"""

° Theoremsza — {Lli—Fﬂgj—l—ﬂgk: b = E?]l—l—bgj+bgk, and c = C1i+ﬂgj—|—t331{,

(a::-f:b}-c: bl bg 53

* Dot & Cross properties
(axb)-c

~LU N\
a- (b x c¢), Since dot and cross can be interchanged.

= (b x ¢) - a, Since dot product is commutative.
= b-(c x a), Since dot and cross can be interchanged.
= (c x a) - b, Since dot product is commutative.

= c¢-(a x b), Sincedot and cross can be interchanged.



 Example to calculate the Vol of Tetrahedron and Coplanar condition
Example 7. Find the volume of tetrahedron having vertices

(-7-k), (4i+5]+qk), (31+97+4k) and 4(—i+j+k).
Also find the value of q for which these four points are coplanar.
(Nagpur University, Summer 2004, 2003, 2002)

- A A _ A A A A

Solution. Let A4 = —}—I’;, §=4/z:+5j+qk, C=3Iz§+9j+4k, 5=4(—?+j+k

AB = B-A=4i+5j+qk —(-j-k)=4i+6 j+(g+1)k
AC = C-A=(3i+9]+4k) —(—j—k)=3i+10j+5k
R A

AD = D-A=4(-i+j+k) —(—j—Kk)=—4i+5]+5k
1
Volume of the tetrahedron = A [AB AC AD]

A4

4 6 g+1
=% 3 10 5 =%{4(50—25)—6(15+20)+(q+1)(15+40)}
4 5 5

_ %{100—210+55(q+1)} = %(—110+55+55q)

1 55 If four points A, B, C and D are coplanar, then (AB AC AD) =0
—(=55+5579) = == (g -1 i.e., Volume of the tetrahedron = 0
( 9= -1

= %(q—l)=0 = q=1

— - - P——



 Problems

- o > o
1. Show that g x (b x a)=(a x b)x a
2. Write the correct answer

(a) (z > ]_3)) > 8 lies in the plane of

—> —> — —> — —

(i) A and B (i) B and C (iii) C and A Ans. (ii)
(b) The value of Z.(?+?)X(Z+?+?) is

(i) Zero (i7) [; , b , ?] + [? , c , ;] (iii) [E) , b , ?] (iv) None of these

Ans. (i)

* Notes (1) Under what conditions does A x (BxC)y=(A xB)x(C?
* (2)

A-BxC)=B-(CxA)=C-(A xB)

AxBxC)y=BA-C)-C(A-B)



Notes on Triple Product

Notation: For any three vectors a, b, and ¢, the scalar triple product (a x b) - ¢
is denoted by [a, b, ¢] is read as box a, b, ¢ . For this reason and also because the
absolute value of a scalar triple product represents the volume of a box (rectangular
parallelepiped),a scalar triple product is also called a box product.

a,b,c]=(axb)-c=a-(bxec)=(bxc)-a=b-(cxa)=b,c,al
b,c,al]=(bxc)-a=b-(cxa)=(cxa)-b=c-(axb=]|c,a,bl.

N

-\ \
In other words, |a,b,c|] = |b,c,a] = [e,a,b] ; that is, if the three vectors are per-
muted 1n the same cyclic order, the value ot the scalar triple product remains the
same.

It any two vectors are int.‘er-changed 1in their position in a scalar triple product,
then the value of the scalar triple product i1s (-1) times the original value. More
explicitly,

a,b,c] =|b,c,a] =[c,a,b| = —|a,c,b] = —|c,b,a] = —|b,a,c|.



* Summary

e The scalar triple product 1s unchanged under a circular shitt of i1ts three
operands (a, b, c):

a-(bxec)=b-(cxa)=c-(axb).

e Swapping the positions of the operators without re-ordering the operands
leaves the triple product unchanged. This follows from the preceding prop-
erty and the commutative property of the dot product.

a-(bxc)=(axb)-ec.

e Swapping any two of the three operands negates the triple product. This
follows tfrom the circular-shitt property and the anticommutativity of the
cross product.

a-(bxec)=-a-(ecxb)=-b-(axc)=—c-(bxa).

e The scalar triple product can also be understood as the determinant of the
3 x 3 matrix that has the three vectors either as its rows or its columns

ay a2 dag

a-(bxc)=det |by by by| =det(a,b,c).




‘e The scalar triple product can also be understood as the determinant of the
3 % 3 matrix that has the three vectors either as its rows or 1ts columns

a; as as
a-(bxc)=det |by by by| =det(a,b,c).

C1 Co Ca

e [f the scalar triple product 1s equal to zero, then the three vectors a, b, and
¢ are coplanar, since the parallelepiped defined by them would be flat and

have no volume.
e |f any two vectors 1in the scalar triple product are equal, then its value 1s

| a-(axb)=(axb)-a=a-(bxb)=(bxa)-a=0.
*EX Leta=(axb):(axc). Show that
a=(c-a)la]® —((c-a))(a-b).

Evaluate o« when a, b and ¢ are unit vectors with b and ¢ perpendicular, and the
angles between a and b, and between a and c, are both w/3.



Examples Example 2.6. If2i—j+ 3k, 3i+2j+k, i+mj+ 4k are coplanar, find the value
of m .

Proof. Since the given three vectors are coplanar, we have

2 —1 3
3 2 1l =0 = m=—3
1 m 4

Example 2.7. Show that the four points (6, 7, 0), (16, 19, ), (0, 3, 6), (2,
5,10) lie on a same plane.
Proof. Let A = (6, 7,0), B= (16, 19, 4), C = (0, 3, 6), D = (2, 5,10) . To show
that the h::ur pmnts A, B, C, D lie on a plane, we have to prove that the three
vectors AB AC’ and ﬁ are coplanar.

AB = OB — OA = (16i — 19j — 4k) — (6i — 7j) = (10i — 12j — 4k)

AC = OC — OA = (—6i + 10j — 6k) and AD — OD — OA = (—4i + 2j + 10k).
10 —12 -4
AB,AC,AD]=|-6 10 —6/=0
—4 2 10




* EXERCISE
1. Determine A such that

a=i+j+k,b=2i—-4k,andc=i+ A j+ 3k are coplanar. Ans. A =5/3
2. Show that the four points

FAN A A Fa VAN N Fay N A N VAN N
6i+3j+2k,3i-2j+4k,5i+7j+3kand-13i +17 j - k are coplanar.
3. Find the constant a4 such that the vectors
N N FANEEVAN VAl FA N N VAl

2i—-j+k,i+2j-3k,and3 i +aj+ 5k are coplanar. Ans. - 4

4. Prove that four points
N FAN N A N FAN N A N FAN FAN

4i+5j+k, —(j+k),3i+9j+4k, 4(-i+ j+k)are coplanar.
- > —
5. If the vectors 4, b and ¢ are coplanar, show that

— — —
a b c

T - >

a . a a. b a.c
e 5> 5| =0
b . a b.b b .c




Dot & Cross product of four vectors
(AxB)-(CxD) = (A-C)(B-D)— (A -D)B-C):
Ax(Bx(CxD)) = BA-(CxD)-(A-B)(CxD.

* Ex

Prove the BAC-CAB rule by writing out both sides in component form.
* Ex Prove that

[AX (BxC)]+[BX(CxA)+[Cx{(AxB)]=0.

* Prob

- — - R
1. If a=2i+3j-k,b=-i+2j—-4k,c =i+ j+k, find(axb).(axc) Ans. -74

2. Prove that (Zx?).(_c;x E))= az(?. ?)—(25) (;.?).



* EXERCISE

— e e e e
1. (bxc)x(cxa)=c (a b c)ywhen (a b ¢) stands for scalar triple product.
- o - > - > - = >,
2. [bxc, cxa, axb)=[ab c]
T e T e
3. dax{bx(cxd)}]=[b.d)a.(cxd)]
e T T n >
4. g lax[a x(axb)]=a (bxa)
- - - 3 o> oo
5. [(a x )x(axc)] d—(a.d)[abc]
2 2 2
9 - A - A - A
6. 24 =|ax1| +|axj| +
- —> N> - A Ao A Ao D A
7. ax b =[(ix a) bli+[(jxa). b]j+[(k><a) blk
— - o — — - o — — - o

8. pxl(axq)x(bxr)+gx[(axr)x(bxp)l+rxl(axp)x(bxq)]=0



LEC 5

* Position Vector & Coordinate system

e Differential Calculus :Derivatives of a vector with respect to a
parameter ,‘%

* Gradient ,i\’ig

* Divergence S
°Eurl g &S?’\&



* Position, Displacement and Separation Vector
The location of a point in three dimensions can be described by listing its Cartesian coor-
dinates (x, y, z). The vector to that point from the origin (Fig. 1.13) is called the position

vector:

r=xx-+ }‘i' + 7 1. < source point

|

[ts magnitude,
c— 2 2 4 52 2 f
/ _\/I Fye+z (1.20) (x, ¥, 2

is the distance from the origin, and
unit vector pointing radially outward

\
field point

X T T~
. N n ( 4 Figure 1.14
r xxXx+yvv+4zz \ <

e =

ro Jxl 4 v+ 22 &(E_I-ZU

The infinitesimal displacement vector, from (x, ¥,2) 10 (x +dx, y +dyv, z +dz), is

dl =dxx+dvy+dzi.

(We could call this dr, since that’s what it /s, but it is useful to reserve a special letter for
infinitesimal displacements.)



* Note
Inelectrodynamics one frequently encounters problems involving twe points—typi cally,
a source point, r’, where an electric charge is located, and a field point, r, at which you
are calculating the electric or magnetic field (Fig. 1.14). It pays to adopt right from the start
some short-hand notation for the separation vector trom the source point to the field point.
I shall use for this purpose the script letter »:
r=r—1'  Its magnitude is 2= |r—1']

_r r—r
T |r—r’i

and a unit vector in the direction fmm rtor 1,‘

\ \°
In Cartesian coordinates, 2= (x — 1)k + v — Y + (z — D),

p= =D+ (= ¥R - ),
(x — XX+ (y =¥y + (2 — )z
VE=xD2+ -y + (z —7)
(from which you can begjn to appreciate the advantage of the script-z notation).

2=




* Position Vector in Different Coordinates System

* Generally we have 3 types of Coordinates known as Curvilinear

Coordinates
e Cartesian Coordinates System
* Spherical Polar Coordinates System

* Cylindrical CoordinatesSystem



* Spherical Polar Coordinates System: Position Vector

The spherical polar coordinates (r. 6, ¢) of a point P are defined in Fig. 1.36; r is the
distance from the origin (the magnitude of the position vector), 8 (the angle down from the
z axis) is called the polar angle, and ¢ (the angle around from the x axis) is the azimuthal
angle. Their relation to Cartesian coordinates (x, y, z) can be read from the figure:

X = rsinécos ¢,

y=rsinfsing, z=rcoso.

Figure 1.36 also shows three unit vectors, r, 8 , ¢,3, peinting in the ditection of increase
of the corresponding coordinates. They constitute an orthogonal (mutually perpendicular)

basis set (just like X, ¥, z), and any vector A can be expressed in terms of them in the usual 1
way:

0 , :
Ay, Ag, and Ay are the radial, polar, and azimuthal compoenents of A. In terms of the >/?

n - - N~
A:Arr—l—Agﬁ—l—Aq_&qﬁ.%\\

S D> "

™\ D)

sinf cos pX + sin@sing y + cos# z,
cosf cos¢p X +cosfsingy —sinf z,

—singX+cosgy,

* Infinitesimal Displacement

A =drit+rd6b+rsinfdeé.

Figure 1.36



* Cylindrical Coordinate

The cylindrical coordinates (s, ¢, z) of a point P are defined in Fig. 1.42. Notice that ¢
has the same meaning as in spherical coordinates, and z is the same as Cartesian: s is the
distance to P from the 7 axis, whereas the spherical coordinate 7 is the distance from the
origin. The relation to Cartesian coordinates is

&1

X =scos¢, y=ssin¢g, =7

The unit vectors 8

cos¢pX+sing¥§,
—singX+cos¢ ¥

L %\ —— _::::..i*"j Y
Wo ‘

* Infinitesimal Displacement Figure 1.42

dl=ds§+sdpd +dzi

N> Dy @B



e Differential Calculus: Ordinary Differential

Question: Suppose we have a function of one variable: f(x). What does the derivative,

df/dx, do for us? Answer: It tells us how rapidly the function f(x) varies when we change
the argument x by a tiny amount, dx:

i 14
d
S

X X

. @ (b)
= C\$S | Figure 1.17

Geometrical Interpretation: The derivatived f/dx isthe slope of the graphof f versus x.

In words: If we change x by an amount dx, then f changes by an amount df; the derivative
is the proportionality factor. For example, in Fig. 1.17(a), the function varies slowly with
x, and the derivative is correspondingly small. In Fig. 1.17(b), f increases rapidly with x,
and the derivative is large, as you move away from x = 0.



 Gradient

Suppose, now, that we have a function of three variables—say, the temperature 7' (x, y, 7)
in a room. (Start out in one corner, and set up a system of axes: then for each point (x, v, 7)
in the room, T gives the temperature at that spot.) We want to generalize the notion of
“derivative” to functions like T', which depend not on one but on three variables.

Now a derivative is supposed to tell us how fast the function varies. if we move a little
distance. But this time the situation is more complicated, because it depends on what
direction we move: If we go straight up, then the temperature will probably increase fairly
rapidly, but if we move horizontally, it may not change much at all. In fact, the question
“How fast does T vary?” has an infinite number of answers, one for each direction we

might choose to explore.

A theorem on partial derivatives states

 If T=T(x,y,z) then
dT = (a_jl) dx + (E)d}? + (3—1—1) dz.  (1.34)
0x ay 0z



This tells us how T changes when we alter all three variables by the infinitesimal amounts

dx,dv,dz. Notice that we do not require an infinite number of derivatives—three will
suffice: the partial derivatives along each of the three coordinate directions.

Equation 1.34 is reminiscent of a dot product:

(E;—T +a—{y+2—Tz)-(dxi+dy§r+dzi) = (VD). @,  (1.33)
X 4

dT =

or, T, 9T,
?T=a—x+——y+ - (1.36)
Z
is the gradient of T. VT is a vector quantity, with three components; it is the generalized
derivative we have been looking for. Equation 1.35 is the three-dimensional version of

Eq. 1.33.



Geometrical Interpretation of the Gradient: Like any vector, the gradient has magnitude
and direction. To determine its geometrical meaning, let’s rewrite the dot product (1.35) in

abstract form:

dT = VT .dl = |VT||dl| cos8, (1.37)

where 6 1s the angle between VT and dl. Now, if we fix the magnitude |dl| and search
around 1n various directions (that is, vary @), the maximum change in T evidentally occurs
when & = ( (for then cos @ = 1). That is, for a fixed distance |dl|, dT is greatest when |

move in the same direction as VT. Thus:

The gradient VT points in the direction of maximum increase of the function
T,

The magnitude |VT| gives the slope (rate of increase) along this maximal
direction.



* Discussion

Imagine you are standing on a hillside. Look all around you, and find the direction
of steepest ascent. That is the direction of the gradient. Now measure the slope in that
direction (rise over run). That is the magnitude of the gradient. (Here the function we’re
talking about is the height of the hill, and the coordinates it depends on are positions—
lautude and longitude, say. This function depends on only rwo variables, not three, but the
geometrical meaning of the gradient is easier to grasp in two dimensions.) Notice from
Eq. 1.37 that the direction of maximum descent is opposite to the direction of maximum
ascent, while at right angles (6 = 90°) the slope is zero (the gradient is perpendicular to
the contour lines). You can conceive of surfaces that do not have these properties, but they
always have “kinks” in them and correspond to nondifferentiable functions.

What would it mean for the gradient to vanish? If VT = 0 at (x, v, z), then dT = 0
for small displacements about the point (x, y, z). This is, then, a stationary point of the
function T'(x, y, z). It could be a maximum (a summit), a minimum (a valley), a saddle
point (a pass), or a “shoulder.”” This is analogous to the situation for functions of one
variable, where a vanishing derivative signals a maximum, a minimum, or an inflection. In
particular, 1f you want to locate the extrema of a function of three variables, set its gradient
equal to zero.



* EX

Find the gradient of r — /x2 + ¥¢ + z2 (the magnitude of the position vector).

Solution;

ar ar . Or .

Vi = — 3+, %
’ dx +3}’F+Bzz

l 2x I 2y

X+ y =

|
—_ — +_
xX+y¥+zz

= - =T,

Va4 y2 422 o

i RV U W U

Problem 1.11 Find the gradients of the following functions:
@) f(x,y,2) =x* +y3 + 74

(b) fx.y,2) = x?y374,

(©) f(x, ¥y, 2) = ¢ sin(y) ln(z).

Il

z



* Ex

Problem 1.13 Let 2 be the separation vector from a fixed point (x”, ¥/, z’) to the point (x, y, z).
and let 2 be its length. Show that

(a) ?(@E) = 2A.
(b) V(1/2) = —&/22.

(c) What is the general formula for V (2")?



* The Del Operator v
The gradient has the formal appearance of a vector, V, “multiplying” a scalar T

. d d .0
VT = (xé-; +F:ay+z£) T. (1.38)

(For once 1 write the unit vectors to the leff, just so no one will think this means 9x/dx, and
so on—which would be zero, since X is constant.) The term in parentheses is called “del”:

(1.39)

Of course, del is not a vector, in the usual sense. Indeed. it 1s without specific meaning until
we provide it with a function to act upon. Furthermore, it does not “multiply” T; rather, it
is an instruction to differentiate what follows. To be precise, then, we should say that Vis

a vector operator that acts upon T, not a vector that multiplies T .



* Note : . .
Now an ordinary vector A can multiply in three ways:

1. Multiply a scalar a : Aa;
2. Multiply another vector B, via the dot product: A - B;
3. Multiply another vector via the cross product: A x B.

Correspondingly, there are three ways the operator V can act:

I. On a scalar function T : VT (the gradient);

2. On a vector function v, via the dot product: V - v (the divergence);

3. On a vector function v, via the cross product: V x v (the curl).



* The Divergence

From the definition of V we construct the divergence:
. d .4 0 . . .
Vv = [ X—4+§—4+i— | -(0X+v,§+ v, Z)
dx dy 0z |
dJvy, dvy  du,
ax T ay T

(1.40)

Observe that the divergence of a vector function v is itself a scalar V - v. (You can’t have
the divergence of a scalar: thal’s meaningless.)

Geometrical Interpretation:  The name divergence is well chosen, for V-v is ameasure
of how much the vector v spreads out (diverges) from the point in question. For example,
the vector function in Fig. 1.18a has a large (positive) divergence (if the arrows pointed in,
it would be a large negarive divergence), the function in Fig. 1.18b has zero divergence, and
the function in Fig. 1.18c again has a positive divergence. (Please understand that v here is
a function—there’s a different vector associated with every point in space. In the diagrams,



* .Imagine that you are standing... bbb

AN

=
il ———————— - —
»

S

'

- h

Fd
o ——.
Ry

NULILIRIS

(c)

‘o ——p

(a) (b)
Cigure 1.18

at the edge of a pond. Sprinkle some sawdust or pine needles on the surface. If the material
spreads out, then you dropped it at a point of positive divergence; if it collects together,
you dropped it at a point of negative divergence. (The vector function v in this model 1s the
velocity of the water—this is a swo-dimensional example, but it helps give one a “feel” for
what the divergence means. A point of positive divergence 18 a source, or “faucet’; a point

l""l.'F ﬂﬂﬁﬂ+:1 Fil ] I‘I;'l.?ﬂ'l'l"rﬂ‘l‘l.ﬂﬂ 'iﬂ i U;H‘L" F &l ‘r'l"']'l"f_'l‘;ﬂ “1,.‘



* Ex
Suppose the functions in Fig. 1.18 are v, = r = xX + y¥ +zZ v, = Z, and v, = ZZ.
Calculate their divergences.

d d 0
V. ‘Fu——(.r)+—(v)+—(z)—l+l+l—3
Jdx ay

this function has a positive dwergem:ﬂ.
<

9 3 3
Vv, _——(U]+E{0}—I——(1)_0+0—|—0 0.

&3"

3
V-v ——(D)+—-(0J+—(LJ-U+U+1~+1



* HW
Problem 1.15 Calculate the divergence of the following vector functions:

(2) Vg = x> % + 3xz2°§ — 2xzZ.
(b)vp =xyX+2yzy+3zxZ.
(c) ¥c=y2i+(2xy+zz)j'—|—2yzi.

NG\

Problem 1.16 Sketch the vector function
B \“ -
r
V= —,
FE

and compute its divergence. The answer may surprise you. . . can you explain 1t”



 The Curl

From the definition of ¥V we construct the curl:

X y Z
Vxv = d/dx d/dy 0/0z
Vy Uy vz

. dv;  dvy . [ OV Ov: . vy Ouy
= X| ——— - — — — . 1.41
(ay 8:)+y(3:: a.x)“(ax 3y) thab

Notice that the curl of a vector function v is, like any cruss product, a vecror. (You cannot

have the curl of a scalar; that’s meaningless.)
« NN\ ) ?

Geometrical Interpretation: The name curl is also well chosen, for V x v is a measure
of how much the vector v “curls around” the point in question. Thus the three functions in
Fig. 1.18 all have zero curl (as you can easily check for yourself), whereas the functions
in Fig. 1.19 have a substantial curl, pointing in the z-direction, as the natural right-hand
rule would suggest. Imagine (again) you are standing at the edge of a pond. Float a small
paddlewheel (a cork with toothpicks pointing out radially would do); if it starts to rotate,
then you placed it at a point of nonzero curl. A whirlpool would be a region of large curl.



* Representation of Curl

z
< /
- //
- \\ - B N —
.-i--""";__,._ ""--. e o T
/ ";“' ‘?f / /, L ..../.... L o . ;
- . y R
\;\ — _ .
g b
X (a) ,x/ (0)
Figure 1.19

* Note:

%
We know that 7’ = o x ;) where o is the angular velocity, 17 is the linear velocity and P
is the position vector of a point on the rotating body.

rd N N A
. O=0;i+0, ]+ 03k
7 o o
Curll V" = g« > A N A
r=xi+yj+zk

If Curl 7 = 0, the field F 1s termed as irrotational.



* EXx

Suppose the function sketched in Fig. 1.19a is v, = —yX + x¥, and that in Fig. 1.19b is

v = x¥. Calculate their curls.
* Soln X X .
X y z
Vxv,=| d/dx d/dy 08/0z
—y X 0
X ¥y z
Vxv,=| 8/dx 8/dy 8/dz
0 X 0

Asexpected, these curls pointin the 4z direction. (Incidentally, they both have zero divergence,
as you might guess from the pictures: nothing is “Spreading out”. . .1t just “curls around.”)

* Notes

= 27,

Il
!H:-

Prove that the divergence of a curl 1s always zero.

Prove that the curl of a gradient 1s always zero.



e Curl & Div Theorems

oIt the curl of a vector field (F) vanishes (everywhere), then F can be written as the gradient
of a scalar potential (V):

VXF=0=F=-VYV.

Curl-less (or “irrotational”) fields. The following con-
ditions are equivalent (that is, F satisfies one if and only
if 1t satisfies all the others);

(a) V x F = 0 everywhere.

(b) f: F - dl 1s independent of path, for any given end
points.

(c) ¢ F - dl = 0 for any closed loop.

(d) F is the gradient of some scalar, F = -V V.



* Theorem 2

If the divergence of a vector field (F) vanishes (everywhere), then F can be expressed
as the curl of a vector potential (A):

V.- F=0= F=V xA.

Divergence-less (or “‘solenoidal”) tields. The following
conditions are equivalent:

(a) V - F = O everywhere.

(b) [ F-daisindependent of surface, for any given bound-
ary line.

(c) § F - da = 0 for any closed surface.

(d) F 1s the curl of some vector, F =V x A,



* EX Show that = 6xy+2° );+(3x2 _ z)}+(3x22 _ y)l’é is irrotational.

Find ¢ such that g = v, (DU, 2012)
Solution. We have

1= 6xy+2)i+Bx* —2)j +Bxz> =Yk ;
- — A ~ ~
VxA = Vx[(6xy+22)i + 3x? —z2)] + B3xz% — y)k]
i j k
-| 90 o O | = 3141322 =323 +k (6x-6x) = 1(0)— ) (0)+R(0)= 0
Ox By Oz
6xy+z3 3x* -z 3x 2—y

Hence, 7 is irrotational. = 4 = Vi, where ¢ is called scalar potential.

o o 0 A0 A00 200 AL A 2
db = adx+ady+gdz = [1 +J +k6 (de+jdy+kdz) = Vy.dr = A . dr

Ox =~ Oy Z

= [(6xy +2°)i + Bx? = 2)] + (3xz% — k] [idx + jdy + kdz]
= (6xy + 2)dx + 3x* - 2) dy + (3xz° — y) dz
= (6xy dx + 3x* dy) — (ydz + zdy) + (Zdx + 3xz°dz)

b= J.(6ngdx+3x2aj/)—f(ydz+zdy) +J.(z3 dx +3xz°dz) = 3x%y —yz+xz° + C Ans.



- —
* Ex For a solenoidal vector F , show that curl curl curl curl F = v* ];) ,

Solution. Since vector ]:“) 1s solenoidal, so div ; =0 .. (1)

We know that curl curl 13) = grad div (1:“) - V? 1:“) ) .. (2)

Using (1) in (2), grad div 1? =grad (0)=0 ... (3)

On putting the value of grad div F in (2), we get

curl curl F_> =— V2 E .. @)

Now, curl curl curl curl ]? = curl curl (- 2 1?) [Using (4)]
=—curl curl (v2 f7)="-[grad div (v2 F)-Vv? (V2 F)] [Using (2)
= _grad (V. V2 F)+ V2 (V2 F)=-grad (V2 V. p)+ V* F [V.F =0

=0+ V*‘F = V* g [Using (1)] Proved
F g .



* Problems 1

(a) Let F{ = x?% and F5 = x X + y ¥ + z 2. Calculate the divergence and curl of F| and F,.
Which one can be written as the gradient of a scalar? Find a scalar potential that does the job.
Which one can be written as the curl of a vector? Find a suitable vector potential.

(b) Show that F3 = yz X | zx ¥ 4+ xy Z can be written both as the gradient of a scalar and as
the curl of a vector. Find scalar and vector potentials for this function.
—> N\ /N /N
* (C) Find the divergence and curl of v =(xyz)i +(3x*y)j+ (xz* - y*2)k at 2, -1, 1)
AN N N
(d) If I__E: xityj+zk _ find the value of curl V.
\/x2 +y? 42

-, -

" (e) Prove that (y* — z* +3yz —2x) i + (3xz + 2xy)}\+ Bxy —2xz + 22)}6\ is both

solenoidal and irrotational.
: - - >
For solenoidal, we have to prove V.F = 0. VxF =0

For irrotational, we have to prove Curl 7 =0. |F is irrotational .. Fis conservative.




* SET:1 Divergence Problems

A A\ A N , 7
1. If r = xi +yj+zk and r = | r |, show that (i) div — | =0,

7

(@) div (r ¢) = 3¢ + r grad ¢.

2. Show that the vector 1™ = (x+3y)/; +(y —32)3\’ +(x—2z)/k\’ is solenoidal.
(DU, I Sem. 2012, RGPFV., Bhopal, Dec. 2003)
3. Show that V.(¢p A) = VoA + ¢(V.A)
If p, ¢, z are cylindrical coordinates, show that grad (log p) and grad ¢ are solenoidal vectors.
5. Obtain the expression for V°f in spherical coordinates from their corresponding expression in
orthogonal curvilinear coordinates.

=

6. V(V¢) V2 L
- Vx(Aan) 2 ;:)A_Fn(Ai)R, =|172|

r

8. dlv(ng)—dlv (g V= fV" — gV f



* SET:2 Curl Problems .
1. Find the divergence and curl of the vector field V= (x> — )i +2xj + (O — )k .

N A N
Ans. Divergence = 4x, Curl = Qy —x)i +yj + dyk
2. If a 1s constant vector and r is the radius vector, prove that

S - - —
(D) V(?.?):E) (i7) div(r xa)=0 (iif) curl(r xa)=—2a

- /.\ > A - A A A

3. Prove that:
VAB)=ANVB + (BV)A +4 x (VxB)y+B x(V xA4)

4. UF=(x+y+1); + ] - @®+1}, show that Feurl F = 0.

- o

5. Vx(0F)=(VO)xF +§(V x F)

= = - o -
6. V(FxG)=G.(VxF)-F(VxG)

- >
7. Prove that curl (axr) = 2a

: - -
8. Prove that Div. (curl y )= v.(V x y ) =0
9. If V' =¢&% (i +]+k), find curl V' Ans.



10.

11.

12.

13.

14.

_)
— 7 -
u=—2,

It then evaluate curl Ans. 0
r
4 - A A A
Evaluate curl grad, »", where » =|r |=|xi +yj+2zk) Ans. 0
Find div }_7) and curl F where F = grad (x> + )° + 2° — 3x2). (RGPV. Bhopal Dec. 2003)

— Oy
Ans. div FF =6(x+y+z),cul F =0

AN
Find out values of a, b, ¢ for which \7 =@x+y+ az)/; +(bx+3y—2)j +Bx+cy+ z)i

1s 1rrotational.
Ans.a=3,b=1,¢c= -1

- AN A
Determine the constants a, b, ¢, so that F* = (x + 2y + az)/z'\ +x-3y-2)] +@x+co+ 22k is
_)
irrotational. Hence find the scalar potential ¢ such that FF = grad ¢. (RGPV. Bhopal, Feb. 2005)
2 2
x” 3y 2 }

Ans. a =4, b =2, ¢ =1, Potential ¢ = (2 ~ +z°+2xy—yz+4zx




Choose the correct alternative:

15. The magnitude of the vector drawn in a direction perpendicular to the surface
x* +2y" + 2% = 7 at the point (1, -1, 2) is
2

3
M 3 i) (iii) 3 (iv) 6  (AMILE.TE., Summer 2000) Ans. (iv)

16. If u =x —y* + z* and I/_’:x;+y}'+z]} then V .(u}") is equal to

= =2 =

(i) Su Gi)y S|V | @) Sw—=|V]) @Gv) Su-|V])

(AMIETE., June 2007)  Ans. (i)
17. A unit normal to x> + ) + 22 = 5 at (0, 1, 2) is equal to
) =G+i+h) () =G+i-h G =GB @) G-k
) ——Gi+j+ iy ——(i+j—k) (i) —=G+ vy —=(i—j
5 TR 5

(AMIE.TE., Dec. 2008) Ans. (iif)

18. The directional derivative of ¢ = x y z at the point (1, 1, 1) in the direction i is

1
@) -1 (i) =3 Gii) 1 (iv) % Ans. (i)



* Problems
e 1. Check the divergence of function

v=1"%+ (2xy + 32}§+ (2yz

e 2. Check the curl of function

) 7



